A Note on the Method of Steepest Descent

Zita Diviš
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Communicated by R. Bojanic
Received October 1, 1976

Consider a differentiable functional (in the sense of Gateaux

$$
f: B \rightarrow R
$$

where B is a real Banach space. Assume that f attains its minimum at a unique point $x_{0} \in B$, so that

$$
F\left(x_{0}\right)=\inf _{x \in B} F(x)>-\infty
$$

In this paper we are interested in approximations to x_{0}. There are few instances where sequences converging to x_{0} can be actually constructed. We shall investigate the convergence of approximation to x_{0} obtained by the method of steepest descent.

Throughout the paper we shall assume that B is a real reflexive Banach space and the pairing between $y \in B^{*}$ and $x \in B$ will be denoted by (y, x). Further, we shall denote $F=\operatorname{grad} f$ and assume that this operator $F: B \rightarrow B^{*}$ is monotone, i.e.,

$$
(F(x)-F(y), x-y) \geqslant 0
$$

for each $x, y \in B$.
The sequence of successive approximations to x_{0} is defined as follows:

$$
\begin{equation*}
x_{n+1}=x_{n}-\epsilon_{n} A F\left(x_{n}\right), \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

where $x_{1}, A: B^{*} \rightarrow B$ and the "relaxation" coefficients ϵ_{n} will be specified later. Such processes were studied by many authors. Our note concerns the results of Vajnberg [4,5]. For a large bibiliography on the subject the reader may consult the article by Ljubič and Majstrovskij [3].

Before we discuss the convergence of the process (1) we shall state two auxiliary results guaranteeing existence and uniqueness of $\min _{x \in B} f(x)$.

Proposition 1. Assume:
(i) F is strictly monotone, i.e., $(F(x)-F(y), x-y)>0$ for all $x, y \in B$.
(ii) Let λ be a real-valued, measurable function defined on $[0,+\infty)$ such that $(F(x), x) \geqslant \lambda(\|x\|)$.
(iii) For certain $R_{0}>0,0<\int_{0}^{R_{0}}|\lambda(t)| / t d t<+\infty$.

Then there exists a unique point $x_{0} \in B$ such that $f\left(x_{0}\right)=\inf _{x \in B} f(x)>-\infty$.
For the proof see Diviš [2].
In particular, we have the following
Proposition 2. Let (i), (ii) of the above proposition be satisfied. Instead of (iii) we shall assume that $\lambda(t) / t$ is integrable on $(0, R)$ for every $R>0$ and

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \int_{0}^{R} \frac{\lambda(t)}{t} d t=+\infty \tag{2}
\end{equation*}
$$

Then $\inf _{x \in B} f(x)$ is assumed at a unique point $x_{0} \in B$ and, moreover, $\lim _{\| x| | \rightarrow+\infty} f(x)=+\infty$.

We shall prove this last assertion. We have $f(x)=f(0)+\int_{0}^{1}(F(t x), t x) \times$ $(d t / t) \geqslant f(0)+\int_{0}^{1}(\lambda(t \cdot\|x\|) / t) d t$ and for $\|x\|=R$ we obtain $f(x) \geqslant$ $f(0)+\int_{0}^{R}(\lambda(t) / t) d t$, whence $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$ by (2).

Remark 1. Let $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ be a strictly increasing continuous function, $\varphi(0)=0, \varphi(r) \rightarrow+\infty$ as $r \rightarrow+\infty$. Let B be a strictly convex space. Then $A: B^{*} \rightarrow B$ is a duality mapping corresponding to φ if

$$
(y, A y)=\|y\| \cdot\|A y\|, \quad\|A y\|=\varphi(\|y\|)
$$

For duality mappings, see e.g., Browder [1].
Our results can now be formulated as follows.

Theorem 1. Assume:
(i) F satisfies all the hypotheses of Proposition 1 and further let F be δ-Hölder continuous with some $0<\delta \leqslant 1$, i.e.,

$$
\begin{equation*}
\|F(x+h)-F(x)\| \leqslant M(r) \cdot\|h\|^{\delta} \tag{3}
\end{equation*}
$$

where M is nondecreasing positive continuous function defined on $[0,+\infty)$; $x, x+h \in D_{r}=\{x:\|x\| \leqslant r\}$. Moreover, let

$$
\begin{equation*}
(F(x+h)-F(x), h) \geqslant \Xi(\|h\|) \tag{4}
\end{equation*}
$$

for every $x, h \in B$, where \mathcal{S} is a continuous strictly increasing function defined on $[0,+\infty)$ and $\Theta(0)=0$.
(ii) B is strictly convex and $A: B^{*} \rightarrow B$ be a duality corresponding to a function φ described in Remark 1 for which

$$
\begin{equation*}
\varlimsup_{r \rightarrow 0+} \varphi^{\delta}(r) / r<+\infty \tag{5}
\end{equation*}
$$

(iii) Let ϵ_{n} be such that

$$
\begin{equation*}
\frac{1}{4} \leqslant \epsilon_{n}{ }^{\delta} M_{n} P_{n} \leqslant \frac{1}{2} \tag{6}
\end{equation*}
$$

where $\quad M_{n}=\max \left(1, M\left(R_{n}\right)\right), P_{n}=\max \left(1, \varphi^{\delta}\left(\left\|F\left(x_{n}\right)\right\|\right) /\left\|F\left(x_{n}\right)\right\|\right)$, and $R_{n} \geqslant\left\|x_{n}\right\|+\varphi\left(\left\|F\left(x_{n}\right)\right\|\right)$. Then the sequence (1) converges towards x_{0} with the choice $x_{1}=0$.

Theorem 2. Assume that F satisfies all the hypotheses of Proposition 2, the inequalities (3), (4) and the hypotheses (ii), (iii) of Theorem 1. Then the process (1) converges to x_{0} with x_{1} chosen arbitrarily.

Remark 2. The result of Vajnberg [5] is contained in Theorem 2 with the special choice of $\varphi(r)=r, \delta=1$ and $\mathcal{S}(r)=r . \mathbb{S}_{0}(r), r \geqslant 0$, where $\Theta_{0}(r)$ satisfies such conditions as we impose on \mathcal{S}. The proof will be a modification of the method used by Vajnberg in [5].

Proof of Theorem 1. By Proposition 1, f assumes a minimum in E at a unique point x_{0}. We have then $F\left(x_{0}\right)=0$. Further, we have the estimate

$$
f(x)>f(0)+\int_{0}^{R_{0}} \frac{\lambda(t)}{t} d t
$$

for all $x \in\left\{x:\|x\|=R_{0}\right\}$. It follows then that

$$
f(x)>f(0)
$$

for all $x \in E,\|x\| \geqslant R_{0}$. (For proof see Diviš [2].) Now let $x_{1}=0$ and consider the difference $f\left(x_{n}\right)-f\left(x_{n+1}\right)$. Using Lagrange's formula, there exists a $\tau_{n} \in(0,1)$ such that $f\left(x_{n}\right)-f\left(x_{n+1}\right)=\left(F\left(x_{n+1}+\tau_{n}\left(x_{n}-x_{n+1}\right)\right), x_{n}-x_{n+1}\right)$. Using (3) and the definition of A we obtain

$$
\begin{aligned}
& f\left(x_{n}\right)-f\left(x_{n+1}\right) \\
& \quad=\left(F\left(x_{n}\right), x_{n}-x_{n+1}\right)-\left(F\left(x_{n+1}+\tau_{n}\left(x_{n}-x_{n+1}\right)\right)-F\left(x_{n}\right), x_{n+1}-x_{n}\right) \\
& =\epsilon_{n}\left(F\left(x_{n}\right), A F\left(x_{n}\right)\right)-\left(F\left(x_{n+1}+\tau_{n}\left(x_{n}-x_{n+1}\right)\right)-F\left(x_{n}\right), x_{n+1}-x_{n}\right) \\
& \geqslant \\
& \geqslant \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \cdot \varphi\left(\left\|F\left(x_{n}\right)\right\|\right) \\
& \quad-\left\|F\left(x_{n+1}+\tau_{n}\left(x_{n}-x_{n+1}\right)\right)-F\left(x_{n}\right)\right\| \cdot\left\|x_{n+1}-x_{n}\right\| \\
& \geqslant \\
& \geqslant \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \cdot \varphi\left(\left\|F\left(x_{n}\right)\right\|\right)-M\left(R_{n}\right) \cdot\left(1-\tau_{n}\right)^{\delta} \cdot\left\|x_{n+1}-x_{n}\right\|^{1+\delta} \\
& \geqslant
\end{aligned} \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \varphi\left(\left\|F\left(x_{n}\right)\right\|\right)-M\left(R_{n}\right) \cdot \epsilon_{n}^{1+\delta} \cdot \varphi^{1+\delta}\left(\left\|F\left(x_{n}\right)\right\|\right) .
$$

Notice that indeed $x_{n}, x_{n+1}+\tau_{n}\left(x_{n}-x_{n+1}\right) \in D_{R_{n}}$ for $n=1,2, \ldots$ We have namely $\left\|x_{n}\right\| \leqslant R_{n},\left\|x_{n+1}\right\| \leqslant\left\|x_{n}\right\|+\epsilon_{n} \varphi\left(\left\|F\left(x_{n}\right)\right\|\right)$ and by (6), $\epsilon_{n} \leqslant 1$. Here we assume without loss of generality that $F\left(x_{n}\right) \neq 0$ for every $n=1,2, \ldots$, We shall write now $M_{n}=\max \left(1, M\left(R_{n}\right)\right.$) and $P_{n}=$ $\max \left(1, \varphi^{\delta}\left(\left\|F\left(x_{n}\right)\right\|\right) /\left\|F\left(x_{n}\right)\right\|\right)$. Observe that according to the Remark 1 and inequality (5), if $\left\{\left\|F\left(x_{n}\right)\right\|\right\}$ is a bounded sequence then so is $\left\{P_{n}\right\}$.

With the above notation we have $f\left(x_{n}\right)-f\left(x_{n+1}\right) \geqslant \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \cdot$ $\varphi\left(\| F\left(x_{n}\right) \mid\right)\left[1-M_{n} \epsilon_{n}{ }^{\delta} P_{n}\right]$. Consequently, if $\epsilon_{n}{ }^{\delta}$ satisfy the inequalities (6), then

$$
f\left(x_{n}\right)-f\left(x_{n+1}\right) \geqslant \frac{1}{2} \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \cdot \varphi\left(\left\|F\left(x_{n}\right)\right\|\right)>0 .
$$

Hence, the sequence $\left\{f\left(x_{n}\right)\right\}$ is decreasing and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \geqslant \inf _{x \in B} f(x)$. With the choice $x_{1}=0$ we find

$$
f\left(x_{1}\right)=f(0)>f\left(x_{2}\right)>f\left(x_{3}\right)>\cdots
$$

But for all $x,\|x\| \geqslant R_{0}$, we have $f(x)>f(0)$ as mentioned above. Thus, all the x_{n} 's must lie in $D_{R_{0}}$ and we conclude $\left\|x_{n}\right\| \leqslant R_{0}(n=1,2, \ldots)$. Consequently, by (3) $\left\{\left\|F\left(x_{n}\right)\right\|\right\}$ is bounded. Thus, both $\left\{M_{n}\right\}$ and $\left\{P_{n}\right\}$ are bounded sequences and let $1 \leqslant M_{n} \leqslant K, 1 \leqslant P_{n} \leqslant K$. Then

$$
1 / 4 M_{n} P_{n} \geqslant 1 / 4 K^{2}>0
$$

and taking into account that $\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right)-f\left(x_{n+1}\right)\right)=0$ and that

$$
\begin{aligned}
f\left(x_{n}\right)-f\left(x_{n+1}\right) & \geqslant \frac{1}{2} \epsilon_{n}\left\|F\left(x_{n}\right)\right\| \varphi\left(\left\|F\left(x_{n}\right)\right\|\right) \\
& \geqslant \frac{1}{2} \cdot\left(1 / 4 K^{2}\right)^{1 / \delta} \cdot\left\|F\left(x_{n}\right)\right\| \cdot \varphi\left(\left\|F\left(x_{n}\right)\right\|\right)
\end{aligned}
$$

we conclude that

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=0
$$

Next, using (4) and the fact that $F\left(x_{0}\right)=0$, we estimate

$$
\begin{aligned}
\Theta\left(\left\|x_{n}-x_{0}\right\|\right. & \leqslant\left(F\left(x_{n}\right)-F\left(x_{0}\right), x_{n}-x_{0}\right) \\
& \leqslant\left\|F\left(x_{n}\right)\right\| \cdot\left\|x_{n}-x_{0}\right\| \leqslant 2 R_{0} \cdot\left\|F\left(x_{n}\right)\right\|
\end{aligned}
$$

whence $\mathcal{G}\left(\left\|x_{n}-x_{0}\right\|\right) \rightarrow 0$ as $n \rightarrow+\infty$ and then, $\left\|x_{n}-x_{0}\right\| \rightarrow 0$ as $n \rightarrow+\infty$. We have, in fact, the error estimate

$$
\left\|x_{n}-x_{0}\right\| \leqslant \mathbb{S}^{-1}\left(2 R_{0} \cdot\left\|F\left(x_{n}\right)\right\|\right)
$$

and also

$$
f\left(x_{n}\right)-f\left(x_{0}\right)=\left(F\left(x_{0}+\tau_{n}\left(x_{n}-x_{0}\right)\right), x_{n}-x_{0}\right) \leqslant C \cdot\left\|x_{n}-x_{0}\right\|^{1+\delta},
$$

C independent of n.

Remark 3. From the last inequality we see, that $\left\{x_{n}\right\}$, under the circumstances, is a minimizing sequence for f.

Proof of Theorem 2. It differs from the above proof in the following way: First, $x_{1} \in B$ can be chosen arbitrarily. Next, the boundedness of the sequence $\left\{x_{n}\right\}$ must be shown in a different way. We have, as before,

$$
f\left(x_{n}\right)>f\left(x_{n+1}\right) \geqslant \inf _{x \in B} f(x)>-\infty, \quad n=1,2, \ldots ;
$$

thus $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists and is finite. If $\left\{x_{n}\right\}$ was not bounded, for a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\},\left\|x_{n_{k}}\right\| \rightarrow+\infty$ and we would have $\lim _{k \rightarrow+\infty} f\left(x_{n_{k}}\right)=+\infty$, a contradiction. This finishes the proof. Note that for the error estimate we again obtain

$$
\left\|x_{n}-x_{0}\right\| \leqslant \Theta^{-1}\left(2 C \cdot\left\|F\left(x_{n}\right)\right\|\right)
$$

where $\left\|x_{n}\right\| \leqslant C(n=1,2, \ldots)$.

References

1. F. E. Browder, Problèmes non linéaires; Lecture Notes, Université de Montréal, 1966.
2. Z. Diviš, Existence theorem and convergence of minimizing sequences in extremum problems, SIAM J. Math. Anal. 2 (1971), 505-510.
3. J. L. Ljubič and G. D. Majstrovikij, General theory of relaxation processes for convex functionals, Usp. Mat. Nauk 25 (1970), 57-113.
4. M. M. Vajnberg, On the convergence of the process of the steepest descent for nonlinear equations, Sibirsk. Mat. Z̈. 2 (1961), 201-221.
5. M. M. Vajnberg, Variational Method and the Method of Monotone Operators (Russian), pp. 154-161, Moscow, 1972.
