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Consider a differentiable functional (in the sense of Gateaux

j:B-+R

where B is a real Banach space. Assume thatfattains its minimum at a unique
point Xo E B, so that

F(xo) = inf F(x) > - W.
xEB

In this paper we are interested in approximations to X o ' There are few
instances where sequences converging to X o can be actually constructed. We
shall investigate the convergence of approximation to X o obtained by the
method of steepest descent.

Throughout the paper we shall assume that B is a real reflexive Banach
space and the pairing between y E B* and x E B will be denoted by (y, x).
Further, we shall denote F = gradfand assume that this operatorF: B -+ B*
is monotone, i.e.,

(F(x) - F(y), x - y) ~ 0

for each x, y E B.
The sequence of successive approximations to X o is defined as follows:

n = 1,2,... , (I)

where Xl' A: B* -+ B and the "relaxation" coefficients En will be specified
later. Such processes were studied by many authors. Our note concerns the
results of Vajnberg [4, 5]. For a large bibiliography on the subject the
reader may consult the article by Ljubic and Majstrovskij [3].

Before we discuss the convergence of the process (I) we shall state two
auxiliary results guaranteeing existence and uniqueness of minxEB j(x).

PROPOSITION 1. Assume:

(i) F is strictly monotone, i.e., (F(x) - F(y), x - y) > 0 for all
x,yEB.
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(ii) Let A be a real-valued, measurable function defined on [0, + (0)
such that (F(x), x) ? A(II x ID.

(iii) For certain Ro > 0, 0 < f:o I A(t)l/t dt < +00.

Then there exists a unique point X o E B such that j(xo) = infxEB j(x) > - 00.

For the proof see Divis [2].
In particular, we have the following

PROPOSITION 2. Let (i), (ii) of the above proposition be satisfied. Instead
of (iii) we shall assume that A(t)/t is integrable on (0, R) for every R > 0 and

(2)

Then infxEBj(x) is assumed at a unique point Xo E B and, moreover,
limllxIHooj(x) = +00.

We shall prove this last assertion. We have j(x) = j(O) + f~ (F(tx), tx) X

(dt/t) ? j(O) + f~ (A(t . II x ID/t) dt and for II x II = R we obtain j(x) ?
j(O) + f: (A(t)/t) dt, whence limllxIHooj(x) = +00 by (2).

Remark 1. Let e:p: [0, + (0) -- [0, + (0) be a strictly increasing continuous
function, e:p(0) = 0, e:p(r) -- + 00 as r -- + 00. Let B be a strictly convex
space. Then A: B* -- B is a duality mapping corresponding to e:p if

(y, Ay) = II y II . II Ay II, II Ay II = e:p(11 y ID·

For duality mappings, see e.g., Browder [1].
Our results can now be formulated as follows.

THEOREM 1. 'Assume:

(i) F satisfies all the hypotheses of Proposition 1 and further let F be
S-Holder continuous with some 0 < S ~ 1, i.e.,

II F(x + h) - F(x)II ~ M(r) . II h liB, (3)

where M is nondecreasing positive continuous function defined on [0, + (0);
x, x + hE Dr = {x: II x II ~ r}. Moreover, let

(F(x + h) - F(x), h) ? 6(11 h ID (4)

for every x, h E B, where 6 is a continuous strictly increasing function defined
on [0, + (0) and 6(0) = O.



METHOD OF STEEPEST DESCENT 75

(ii) B is strictly convex and A: B* ---+ B be a duality corresponding to
a function ffJ described in Remark I for which

(5)

(iii) Let En be such that

(6)

where M n = max(l, M(Rn)), Pn = max(1, cpo(11 F(xn)ID/11 F(xn)ID, and
Rn ;:?o II Xn II + cp(11 F(xn)ll)· Then the sequence (1) converges towards Xo
with the choice Xl = 0.

THEOREM 2. Assume that F satisfies all the hypotheses of Proposition 2,
the inequalities (3), (4) and the hypotheses (ii), (iii) of Theorem 1. Then the
process (1) converges to Xo with Xl chosen arbitrarily.

Remark 2. The result of Vajnberg [5] is contained in Theorem 2 with
the special choice of cp(r) = r, ;) = I and 6(r) = r. 6 0(r), r ;:?o 0, where
6 0(r) satisfies such conditions as we impose on 6. The proof will be a modi
fication of the method used by Vajnberg in [5].

Proof of Theorem I. By Proposition I, f assumes a minimum in E at
a unique point X o ' We have then F(xo) = 0. Further, we have the estimate

f(x) > f(O) + (0 ;\;t) dt

for all X E {x: II X II = Ro}. It follows then that

j(X) > j(O)

for all x E E, II x II ;:?o Ro . (For proof see Divis [2].) Now let Xl = °and con
sider the difference j(xn) - j(xn+l)' Using Lagrange's formula, there exists
a 'Tn E (0, I) such thatj(xn) - j(Xn+l) = (F(xn+l + 'Tn(Xn - Xn+l)), Xn - Xn+l)'
Using (3) and the definition of A we obtain

f(xn) - f(xn+l)

= (F(xn), Xn - Xn+l) - (F(xn+1 + 'Tn(xn - Xn+l)) - F(xn), Xn+1 - xn)

= En(F(xn), AF(xn)) - (F(xn+1 + 'Tn(xn - Xn+l)) - F(xn), Xn+1 - xn)

;:?o En II F(xn)II • ffJ(l1 F(xn)ID

- II F(xn+l + 'Tn(Xn - Xn+l)) - F(xn)II . II Xn+1 - Xn II
;:?o En II F(xn)II . ffJ(11 F(xn)ID - M(Rn) . (1 - 'Tnt '11 Xn+1 - Xn 111+0

;:?o En II F(xn)II cp(11 F(xn)ID - M(Rn) . E~+o . cp1+O(l1 F(xn)ll).
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Notice that indeed Xn , Xn+l + 'Tn(Xn - Xn+l) E DR for n = 1,2,.... We
have namely II Xn II :'( Rn , II Xn+l II :'( II Xn II + Enep(11 F(xn)ll) and by (6),
En :'( 1. Here we assume without loss of generality that F(xn) #- 0 for every
n = 1,2,... , We shall write now M n = max(l, M(Rn)) and Pn =

max(l, ep6(11 F(xn)II)/11 F(xn)!I). Observe that according to the Remark 1 and
inequality (5), if {II F(xn)ll} is a bounded sequence then so is {Pn}.

With the above notation we have f(xn) - f(xn+l) ?o En F(xn)1I .
ep(11 F(xn)il) [1 - M nEn6Pn}. Consequently, if En6 satisfy the inequalities (6),
then

Hence, the sequence {f(xn)} is decreasing and limn_oo f(xn) ?o infxEB f(x).
With the choice Xl = 0 we find

But for all x, II X II ?o Ro , we have f(x) > f(O) as mentioned above. Thus,
all the xn's must lie in DR and we conclude II Xn II :'( Ro (n = 1,2,...).

o
Consequently, by (3) {II F(xn)ll} is bounded. Thus, both {Mn} and {Pn} are
bounded sequences and let 1 :'( M n :'( K, 1 :'( Pn :'( K. Then

and taking into account that limn_oo (f(xn) - f(xn+l)) = 0 and that

f(xn) - f(xn+l) ?o tEn II F(xn)II ep(11 F(xn)ll)

?o t . (l/4K2)1/6 • II F(xn)II . ep(11 F(xn)11)

we conclude that

Next, using (4) and the fact that F(xo) = 0, we estimate

6(11 Xn - X o II :'( (F(xn) - F(xo), Xn - xo)

:'( II F(xn)II • II Xn - X o II :'( 2Ro . II F(xn)l!

whence 6(11 X n - Xo II) -+ 0 as n -+ +00 and then, II X n - Xo II -+ 0 as
n -+ + 00. We have, in fact, the error estimate

and also

C independent of n.
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Remark 3. From the last inequality we see, that {xn}, under the circum
stances, is a minimizing sequence for f

Proof of Theorem 2. It differs from the above proof in the following
way: First, Xl E B can be chosen arbitrarily. Next, the boundedness of the
sequence {xn } must be shown in a different way. We have, as before,

n = 1,2,... ;

thus limn~oo f(x n) exists and is finite. If {xn} was not bounded, for a subse
quence {xn } of{xn}, II X n 11- +00 and we would have limk~+oo f(xn ) = +00,

k k k

a contradiction. This finishes the proof. Note that for the error estimate we
again obtain

where II X n II :(; C (n = 1,2,...).
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